Implicit Finite Element Schemes for the Stationary Compressible Euler Equations
نویسندگان
چکیده
Semi-implicit and Newton-like finite element methods are developed for the stationary compressible Euler equations. The Galerkin discretization of the inviscid fluxes is potentially oscillatory and unstable. To suppress numerical oscillations, the spatial discretization is performed by a high-resolution finite element scheme based on algebraic flux correction. A multidimensional limiter of TVD type is employed. An important goal is the efficient computation of stationary solutions in a wide range of Mach numbers, which is a challenging task due to oscillatory correction factors associated with TVD-type flux limiters. A semiimplicit scheme is derived by a time-lagged linearization of the nonlinear residual, and a Newton-like method is obtained in the limit of infinite CFL numbers. Special emphasis is laid on the numerical treatment of weakly imposed characteristic boundary conditions. A boundary Riemann solver is used to avoid unphysical boundary states. It is shown that the proposed approach offers unconditional stability as well as higher accuracy and better convergence behavior than in the case of algorithms in which the boundary conditions are implemented in a strong sense. The spatial accuracy of the whole scheme and the boundary conditions is analyzed by grid convergence studies. Copyright c © 2010 John Wiley & Sons, Ltd.
منابع مشابه
Implicit FEM-FCT algorithm for compressible flows
The flux-corrected transport (FCT) methodology is generalized to implicit finite element schemes and applied to the Euler equations of gas dynamics. The underlying low-order scheme is constructed by applying scalar artificial viscosity proportional to the spectral radius of the cumulative Roe matrix. All conservative matrix manipulations are performed edge-by-edge which leads to an efficient al...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملImplicit flux-corrected transport algorithm for finite element simulation of the compressible Euler equations
The flux-corrected-transport paradigm is generalized to implicit finite element schemes for hyperbolic systems. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. A mathematical theory for positivitypreserving schemes is reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transpo...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کامل